
An Efficient Algorithm for Mining Maximum-Length
Repeating Patterns in Music Databases

Ioannis Karydis, Alexandros Nanopoulos, and Yannis Manolopoulos?

Dept. Informatics, Aristotle University,
Thessaloniki, 54124, Greece

emails: {karydis,alex,manolopo}@delab.csd.auth.gr

Abstract. Maximum-length repeating patterns (MLRP) are parts of the melody
string of a music object, that appear frequently and have the largest length
among all repeating patterns. In this paper we examine the problem of dis-
covering MLRP in music objects. We present an algorithm for the extraction of
MLRP, which discovers all maximum-length repeating patterns using an efficient
accession during searching, by avoiding costly repetition frequency calculation
and by examining as few as possible repeating patterns in order to reach MLRP.
Experimental results illustrate the significant performance gains due to the pro-
posed algorithm, compared to an existing baseline algorithm.
Keywords: content-based music retrieval, maximum-length repeating patterns,
data mining, theme discovery, music databases.

1 Introduction

The continuously increasing spread of music on the internet as well as in digital music
libraries expands the already immense interest of the public and the entertainment
industry in music databases. Music data, due to their complex structure and their
subjectivity to inaccuracies caused by perceptual and cognitive effects, introduce new
challenges.

A characteristic representation type for music objects is based on the use of repeating
patterns included in a music object, i.e., segments of the music object that appear
repeatedly (c.f., Section 3). Their use (through the notion of motifs) has been extensive
through out the history of music [3] as well as in the modern music [2], since they
comprise a compact form for indexing the original formats, a reference point for the
discovery of music or even characteristic signatures of music objects [8].

For the problem of efficient discovery of repeating patterns, recent research has
employed data mining techniques [12, 16, 17, 24]. Focus has been oriented on the longest
non-trivial repeating patterns [17, 12] which are typically those that can yield to themes
[17] or themes are based upon [12](constrained by a maximum length value, e.g., 30).

A straightforward approach for the discovery of the longest repeating patterns is
rather inefficient, since a large number of intermediate repeating patterns (i.e., that
are not the longest) have to be examined before reaching the longest ones. What is,
therefore, required is the development of new algorithms for the efficient mining of
? Contact author: Tel: +302310996363, Fax: +302310998419

the longest repeating patterns, which will not have to undergo the discovery of many
intermediate repeating patterns.

In this paper, we propose a novel algorithm that discovers all maximum-length
repeating patterns (MLRPs) using a fast ascending, as far as the length of the patterns
is concerned, during searching so as to quickly reach these patterns. Based on prior
work on repeating patterns, we focus on note-sequences.

The technical contributions of this paper are summarized as follows:

– The introduction of the problem of discovering maximum-length patterns in music
objects. In the field of music databases, this problem poses significant requirements
due to the very large length such patterns may have (i.e., a large search space).

– A novel algorithm that efficiently discovers the maximum-length patterns. The
proposed algorithm addresses the characteristics that result from the nature of
the examined problem, i.e., factors like the ordering of notes or their replication
within music sequence (such factors do not appear in work in related fields like the
frequent itemsets mining).

– The detailed experimental results which show the efficiency of the proposed algo-
rithm, and the performance gains compared to an existing baseline algorithm.

The rest of the paper is organised as follows. Section 2 describes the related work,
whereas Section 3 discusses further one of the existing works that is used as a base-
line algorithm. Section 4 describes the proposed method and Section 5 contains the
experimentation results. Finally, Section 6 draws the conclusion.

2 Related Work

Early works on music information retrieval date back on 1966 [15]. Currently, many
disciplines of music IR have been extensively researched including the types of queries
allowable, similarity algorithms, various mapping schemes for the music objects and a
range of indexing techniques.

Based on the well-studied text, image and video data IR, music IR can be performed
using text (metadata) [1], pieces of structured or unstructured music [4, 10, 14, 25],
humming [11, 9, 21, 4, 7] or even classic western musical notation [18] as queries.

Music is available in three basic representations: Audio, Time-stamped Events and
Common Music Notation [6]. To achieve semantic, efficiency as well as to overcome
data processing constraints the previously mentioned basic representations require a
mapping. Although numerous approaches exist in the literature, the similarity of two
mapped music objects mainly depends on the string matching core technique since,
most usually, the mapping procedure for a music object produces a string of a chosen
characteristic.

The process of mining repeating patterns is described in [12, 17], where two al-
gorithms are proposed for the discovery of non-trivial repeating patterns and feature
melody string. Koh and Yu ([16]) presented a means of mining the maximum repeating
patterns from the melody of a music object using a bit index sequence. Rolland and
Ganascia [23] described an algorithm for the mining of sequential patterns in music
data, which considers several peculiarities of music objects.

As far as the use of repeating patterns in theme discovery is concerned, Smith
and Medina [24] proposed a pattern matching technique that is based on a collection
of previously found longest repeating patterns. Meek and Birmingham [19] developed
several features that they consider for the discovery of themes. An interesting web-based
system for theme discovery is presented in [13].

In the field of itemsets mining, several methods have been proposed recently for the
discovery of the maximum-length frequent itemsets [5, 26]. There is distinct analogy be-
tween the problem examined in [5, 26] and the problem of discovering MLRPs. However,
mining MLRPs presents important differentiations due to which the aforementioned
approaches cannot be directly applied.

3 Background and Motivation

3.1 Definitions

Following previous research on discovering repeating patterns [12, 16, 24], we consider
a music sequence to be a sequence of symbols from an alphabet containing discrete
elements. The discrete elements correspond to pitches of music notes. The representa-
tion of the music sequence as a sequence of symbols corresponding to pitches is utilised
for the easier presentation of the approaches introduced, as it is suggested in previous
work [12] (notice that for the MIDI representation, the size of the alphabet is equal to
128).

Definition 1 (Repeating pattern) Given a music sequence S, a repeating pattern
P is a subsequence of consecutive elements of S that appears at least twice in S [12].

The repeating frequency freq(P) (hereafter called frequency) of a repeating pattern
P is defined as the number of appearances of P in S. The length |P | of a repeating
pattern P is the number of notes in P .

Definition 2 (Maximal repeating pattern [16]) A repeating pattern X is a max-
imal repeating pattern in a music sequence S, if X is a repeating pattern in S and there
does not exist another repeating pattern X ′ in S such that: (i) X is a subsequence of
X ′, and (ii) the freq(X) = freq(X ′).

Definition 3 (Maximum length repeating pattern) A repeating pattern X is a
maximum length repeating pattern in a music sequence S if: (i) X is a maximal repeat-
ing pattern of S, and (ii) there does not exist another repeating pattern X ′ in M for
which |X ′| > |X|.

For convenience, the maximum-length repeating patterns are henceforth denoted as
MLRPs.

Finally, the definition of the problem examined in this paper is as follows: given a
music sequence S, find all (if any) MLRPs.

3.2 Motivation

Hsu et al. [12] proposed two different techniques for the discovery of non-trivial repeat-
ing patterns. Herein we focus on the string-join approach, which is denoted as HLC
(from the initials of the authors’ names) and will be used as a baseline algorithm for
the extraction of MLRPs. HLC develops in two stages. In the first stage1, repeating
patterns of length 2k (initially, k = 0) are found. The search proceeds until a kl is
reached for which no repeating pattern exists. At this point, HLC has to determine the
length L of the longest repeating pattern, which is unknown in advance. Though, the
length of the maximum repeating pattern L is known to be between 2kl−1 ≤ L < 2kl .
More details can be found in [12].

As far as the HLC is concerned, among the other non-trivial repeating patterns, it
discovers the set of all MLRPs, in a quite efficient way, due to the following reasons:
(i) Only a logarithmic number of intermediate lengths is considered to discover the
MLRPs, whereas a straightforward approach would check all possible lengths between
1 and L. (ii) Through our experimental measurements we have found that the most
time consuming stage of the HLC is the second stage. In contrast, should the focus be
only in finding the MLRPs (and not the set of all repeating patterns), then the second
stage can be entirely omitted.

For the abovementioned reasons, a modified version of HLC (that consists only of
its first stage) can be considered as a good baseline algorithm for comparison purposes,
since it significantly outperforms the straightforward approach. Nevertheless, it must
be mentioned that HLC was not designed to discover only the MLRPs. Although it
approaches the set of MLRPs through a logarithmic number of intermediate levels, at
each such examined level it has to identify all the repeating patterns of that level, thus
performing extra time-consuming frequency calculations. Therefore, a new approach
is required that will avoid as much as possible the cost to examine (i.e., counting the
frequency) intermediate patterns. Finally, it has to be mentioned that [16] proposes
a different approach for the discovery of repeating patterns. However this approach is
not efficient for the purpose of discovering MLRPs.

4 The Proposed Method

4.1 Outline of the Approach

This section describes the proposed algorithm, denoted as M2P (Mining Maximum-
length Patterns). The outline of the approach taken by M2P is as follows. Let S =
〈s1, . . . , sn〉 be a music sequence of length n and RP[x] be the set of repeating patterns
the length of which is x. Assume that we have identified all repeating patterns of
length two, which are denoted as RP[2] = {〈si, sj〉 : si, sj ∈ S, freq(〈si, sj〉) ≥ 2}. The
elements of S and of RP[2] form a directed graph G(V, E), where the set of vertices
V (G) corresponds to the set of all elements of S and the set of all edges E(G) to the
set of all elements of RP[2] (i.e., a directed edge 〈si → sj〉 in the graph corresponds to
the member 〈si, sj〉 of RP[2]).

1 The second stage is irrelevant to the discovery of MLRPs and is not commented.

Each path P in G is considered as a possible repeating pattern, since all its subpaths
of length two (i.e., the directed edges) are repeating patterns. Therefore, the set of all
possible paths of G forms the search space of the examined problem, as the MLRPs are
also repeating patterns and, thus, correspond to paths of G. A naive approach would
consider the complete graph, leading to an excessive number of possible paths, whereas
(due to the anti-monotonicity property this number is drastically pruned, due to the
fact that edges correspond only to members of RP[2].

The objective of M2P is to identify in the aforesaid search space those paths that
have maximum length and correspond to a repeating pattern. To attain this, M2P
traverses G by searching for the paths that originate from any of its vertices. While
encountering paths, M2P is concerned in identifying only these that are candidates to
become a MLRP. During the traversal, it keeps track of the path C that has already
been visited and: (i) has, so far, the maximum length, and (ii) corresponds to a repeat-
ing pattern (i.e., its frequency has been counted and found to be larger than two)2.
The pruning of the search space is accomplished by discarding the extensions (i.e.,
appending of vertices and edges during the traversal) of paths that their frequency has
been counted and they were not found to be repeating patterns, as none of their exten-
sions can lead to an MLRP (due to anti-monotonicity, since an MLRP is a repeating
pattern). Therefore, while advancing the traversal of G, three cases need be considered:

Case 1: If the currently visited path P has length smaller than |C|, then counting its
frequency can be avoided (since it will definitely not be an MLRP).

Case 2: If |P | > |C|, then the frequency of the corresponding pattern in S is calcu-
lated, and if found to be a repeating one, then C is set to be equal to P . Otherwise,
if not a repeating pattern, then (as already explained) the traversal does not have
to follow any path containing P .

Case 3: Finally, if P ’s length is equal to |C|, then the calculation of its frequency is
avoided, at this point. Instead, we maintain a list and link it to C. If after the end
of G’s traversal no other repeating pattern has been found with length greater than
|C|, all such paths linked to C are also candidates to be repeating patterns (C has
been identified as an MLRP, because it was the first path of its length that was
was considered during the traversal, so its frequency has been counted due to case
1).

Following the previously discussed approach, M2P calculates the frequency of a
path only if its length is such that it can possibly become an MLRP. For this reason, it
postpones as much as possible the costly operation of frequency calculation, aiming at
finding new candidates with larger length. The result is that M2P, unlike HLC, avoids
calculating the frequency of all paths of a certain length. Instead, it only determines the
frequency of paths of a given length, until the first path corresponding to a repeating
pattern is found. Finally, when finished with the traversal, all candidates that are linked
to the initially found MLRP (i.e., those with length equal to the found maximum found
length for |C|) are examined so as to find all MLRPs, as there may be more than one. It
should be noted that the frequency counting in M2P is done by using a string matching

2 Initially, any edge of G can be selected as such path.

algorithm3, since the frequency of a path P is equal to the number of appearances of
P (i.e., of the sub-sequence corresponding to P) in S.

4.2 The M2P Algorithm

In this section we describe the algorithmic form of M2P, which is depicted in Figure 1.
The input data of M2P is the music sequence. Initially, M2P calculates all repeating
patterns of length 2 and stores them in the RP[2] set. This is done as an initialization
step through a two dimensional array M , the size of which for the MIDI representation
is 128×128. The graph G is constructed based on the adjacency matrix representation
of M . Next, M2P performs a traversal of G during which it examines the paths P
originating from the vertices of G (the traversal visits the vertices in a depth-first
manner).

Procedure M2P(MusicSequence S)
begin
1. RP[2] = Find all rp with length 2
2. Construct G(RP[2])
3. CML := 2
4. MLQ := ∅
5. for each v ∈ V (G)
6. Traverse(G, v, 〈v〉, CML, MLQ)
7. endfor
8. for each P ∈ MLQ
9. if (CountFreq(q)≥ 2)
10. Output(P)
11. endif
12. endfor
end

Procedure Traverse(Graph G, Vertex v,
Path P , int CML, Queue MLQ)

begin
1. bool prune := false
2. Append(P , v)
3. if Length(P) > CML
4. if CountFreq(P ≥ 2)
5. MLQ := P
6. CML = Length(P)
7. else
8. prune := true
9. endif
7. else if length(P) = CML)
8. Enqueue(MLQ, P)
9. endif
10. if not prune
11. for each u ∈ V (G) and 〈v → u〉 ∈ E(G)
12. Traverse(G, u, P , CML, MLQ)
13. endfor
14. endif
end

Fig. 1. The MLRP algorithm.

Within the graph traversal procedure, the length of the current path P is compared
against the Current Maximum Length path, which is denoted as CML (initially, it is
set to 2, since M2P has already determined the RP[2] set). If P ’s length is greater than
CML, then M2P counts the frequency of P and, in case it is greater than 2, P is stored
(as the only element) in the Maximum Length Queue (denoted as MLQ), whereas
CML is set equal to the length of P . In contrast, if P ’s length is equal to CML, then

3 For simplicity, in our implementation we used the Knuth-Morris-Pratt algorithm.

P is added to MLQ without counting its frequency. Finally, if the search for paths
containing P has not been pruned (pruning occurs when P ’s frequency is counted and
found less than two), the traversal continues further by visiting nodes adjacent to the
last node v of P .

After the traversal of G has ended, M2P has established (if any) one MLRP (the first
element in MLQ). Therefore, it continues by calculating the frequency of all remaining
members (if any) in the MLQ, to find the set of all MLRPs.

The correctness of M2P can easily be deduced as follows. Assume that PM is a
MLRP whose length is M and its elements are 〈p1, . . . , pM 〉. Since PM is a MLPR,
its frequency is equal or greater than 2. Therefore, each consecutive pair 〈pi, pi+1〉
of PM ’s elements belongs to RP[2] and has a corresponding edge in G. Accordingly,
PM will be examined by M2P during the traversal of G, following the edges 〈pi, pi+1〉
for 1 ≤ i < M . If PM is the first path with length M that is examined, then its
frequency will be counted and PM will constitute the the first element of MLQ (by
deleting any prior entries corresponding to candidates of smaller length). Otherwise, if
other paths of length M have already been included in MLQ, since no other repeating
pattern P ′ exists with |P ′| > M , PM will be examined in the step after the traversal
has terminated, while counting the frequencies of all elements of MLQ. Thus, in either
case, PM will be included in MLQ and will be included to the output of M2P.

4.3 Example

To clarify the description of M2P, we give an example of its execution. For this example,
S = EBCDEHGABFJDEHGJEBCDEABFJ, its RP[2] set and the corresponding graph
G are illustrated in Figure 2. Assume (w.l.o.g.) that the M2P begins its traversal from
the paths emanating from vertex A and from edge AB in particular. Initially, path
ABC is visited (Figure 3a). Since its length is 3 > CML = 2, its frequency is counted
for and found equal to 0. Therefore, M2P does not continue the traversal following the
path ABC. Then, it continues by examining ABF, whose frequency is counted equal to
2. Accordingly, CML is set to 3 and ABF is inserted in MLQ. The traversal continues
further with this path, moving on to ABFJ, whose frequency is counted and found equal
to 2. Similarly, CML is set to 4 and MLQ={ABFJ}. Furthermore, the path ABFJH
is considered, but its frequency is counted to be equal to 0. Therefore, we avoid the
examination of further paths that contain it.

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

Fig. 2. The example graph G.

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

(a)

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

(b)

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

(c)

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

(d)

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

(e)

Fig. 3. Example of paths originating from vertices A, B, C, D, and E.

Next, the traversal moves on to vertex B (Figure 3b) and the edge BC in particular.
To begin with, path BCD is examined, the length of which is less than CML, and thus its
frequency is not counted. However, the traversal continues following paths containing
BCD, since it cannot be discarded as not being a repeating pattern (i.e., we have not
counted its frequency). Thus, path BCDE is next examined, whose length is equal to
CML. Thus, BCDE is added to MLQ and MLQ becomes equal to {ABFJ,BDCE}.

Following a similar approach, paths emanating from vertex C (Figure 3c) offer no
change CML or MLQ, while the paths resulting from vertex D (Figure 3d) add DEHG to
MLQ (since |DEHG | = CML = 4, its frequency is not calculated),while MLQ becomes
equal to {ABFJ,BDCE,DEHG}. Moving on to vertex E (Figure 3e), the path EBCD
is added to the MLQ (MLQ={ABFJ,BDCE,DEHG,EBCD}). Next, path EBCDE is
examined, and its frequency is counted and found equal to 2. Therefore, CML is set
to 5, whereas the current elements of MLQ are removed and EBCDE is inserted in it.
Finally, all other vertices (F , G, H and J) offer no change. Thus, as no other candidates
exist in the MLQ the set of found MLRPs is equal to {EBCDE}.

4.4 Developing Optimizations

The efficiency of the M2P algorithm rests with its two main features, the ability to
avoid, as already described above, the calculation of the repeating frequency of the
candidates the length of which is equal to the CML, and the ability to avoid completely
any measurement concerning candidates with length smaller than the CML. To improve
further its efficiency, two techniques that we used to enhance the basic form of M2P
will now be described.

As indicated in [12], the number of repeating patterns with small length is much
higher than the number of repeating patterns with large length. For this reason, we
would like M2P to reduce the number of examined paths with small length. This is
attained in a preprocessing step. Let ` be the length of repeating patterns that we
are interested in reducing their number. M2P reads the music sequence S and hashes

subsequences of length ` into a hash table, whose bins are integer counters. During
the traversal, when a path P of length ` is examined, M2P checks the corresponding
bin and if its counter is less than 2, it prunes the traversal for extensions of P as P
cannot possibly be a repeating pattern. However, if the value of the counter is larger
than (or equal to) 2, P may not necessarily be a repeating pattern, due to possible
hash collisions in the corresponding bin. Therefore, hashing can provide only a filter
to reduce the number of examined paths of length `. It should be noticed that an
analogous hashing technique has been used in the case of mining itemsets [22]. As the
hashing technique pays-off only for paths with small length, in our implementation we
consider the value of ` to be equal to 3 and 4 (a separate hash table is maintained for
each considered value of `).

The second technique considers the impact of cycles within the graph G. Evidently,
the elements of repeating patterns and MLRPs may not be distinct, thus vertices
and/or edges of G may be visited more than once for the currently examined path
(within the traversal procedure). Assume that a path P is a repeating pattern but its
length is less than CML. Then, if P contains a cycle, by using the vertices and edges
in the cycle for an appropriate number of times (i.e., to follow the cycle as many times
as needed), P can be extended so as the length of this extension to become equal to
CML. Moreover, due to Case 3 (described in Section 4.1), a large number of paths can
be inserted in MLQ. For this reason, we enhance the basic form of M2P previously
described, in order to locate the existence of a cycle within the currently visited path
and, when Case 3 holds for a path containing cycles, we first count its frequency before
appending it to MLQ. Despite the fact that this technique may increase the number
of intermediate paths the frequency of which is counted, it also prevents the excessive
increase of the members of MLQ (frequency of which will have to be calculated at the
end of the traversal procedure).

The two aforementioned optimizations have been found to improve substantially
the performance of M2P. For this reason, they have been incorporated to the basic
form that was described earlier and are being used henceforth.

5 Performance Evaluation

In support of the efficiency of the proposed algorithm, this section presents a number
of experiments that have been performed. A concise description of the experimentation
platform and data sets is also given followed by a performance analysis based on exper-
imental comparison of the baseline approach, i.e., the modified HLC, and the proposed
approach, M2P.

5.1 Experimental Set-up

All algorithms described have been implemented and performed on a personal com-
puter with 933MHz Intel Pentium III processor, 512MBytes Ram, operating system
MS Windows 2000, while the developing package utilised was MS Visual C++. The
performance measure is the wall-clock time and is measured in milliseconds.

The data sets employed for the experiments included real as well as synthetic music
objects. The real music objects originate from MIDI files acquired from the World Wide
Web, converted from the MIDI format to melody strings. These music objects include
classical works (The 4 Seasons-Concerto 1 “Spring/La Primavera”-Allegro composed
by A. Vivaldi and “Toreador” composed by G.Bizet) as well as modern pieces (“Tears
in heaven” composed by E. Clapton), since different kinds of music contain different
characteristics and lead to varying lengths of MLRPs. The object size of “Spring/La
Primavera”, “Toreador” and “Tears in heaven” is 8.292, 22.898, 5.786, respectively and
denotes the length of each note sequence. The note count of an object is the number
of discrete notes the melody string contains and for the previously mentioned music
objects the note count is respectively 50, 72 and 40. As far as the synthetic music
object is concerned, following [12], the synthetic data is generated with uniform note
distribution, object size 1000 notes, while the note count is variable.

5.2 Results

Initially, we considered real music objects and we focused on classic ones. Herein, we
present results for the “Spring/La Primavera” music object with respect to its size
(i.e., by varying the size of the object that we take into account each time [12]). The
results on execution time are illustrated in Figure 4a. Moreover, Figure 4b depicts the
length of the discovered MLRPs with respect to the object’s size.

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(m

se
c)

Object size

M2P
HLC

(a)

20

30

40

50

60

70

80

90

100

110

120

200 400 600 800 1000 1200 1400 1600 1800

M
LR

P
 le

gt
h

Object size

(b)

Fig. 4. Results for the classic music object: (a) Execution time vs. object length; (b) Length
of MLRPs vs. object length.

As expected, the execution time of both algorithms increases with increasing object
sizes. This is due to two reasons. During the increase of the length of the MLRP (see
Figure 4b), both algorithms examine more levels, thus the cost increases. When the
length of MLRP remains constant for increasing object size (e.g., for size larger than
800), although HLC and M2P do not examine more levels, the processing within the
levels becomes more costly (due to the increase in the number of intermediate repeating

patterns). Nevertheless, M2P clearly outperforms HLC by a factor more than two in
the case of larger object sizes.

In our next experiment we considered modern music objects. Herein we present
results from “Tears in heaven”, which are depicted in Figure 5. Particularly, Figure 5a
demonstrates the execution time for varying object size, whereas Figure 5b the length
of the discovered MLRPs again with respect to the object’s size. Similarly to the case
of classic music object, execution time for both algorithms increases with increasing
object size. It worths noticing that the lengths of the discovered MLRPs (Figure 5b)
are relatively reduced compared to the case of the classic music object, supporting
thus, the previously stated argument that different kinds of music contain different
characteristics. Nevertheless, execution time shows no relative reduction (in the case
of HLC it increases slightly), due to the increased number of intermediate repeating
patterns (which is not shown). As in the previous experiment, M2P compares favorably
with HLC and presents an improvement for a factor up to 4 (for larger object sizes).

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

T
im

e
(m

se
c)

Object size

M2P
HLC

(a)

10

12

14

16

18

20

22

24

26

28

0 500 1000 1500 2000 2500 3000

M
LR

P
 le

gt
h

Object size

(b)

Fig. 5. Results for the modern music object: (a) Execution time vs. object length; (b) Length
of MLRPs vs. object length.

We now move on to more clearly examine the impact of the length of discovered
MLRPs on execution time. We used “Toreador” and varied its size so as to identify the
points where an increase in the object’s size leads to an increase in the length of dis-
covered MLRP. Therefore, for the points found (expressed by the corresponding length
of the discovered MLRPs) we measured the execution, and the results are depicted
in Figure 6a. As shown, the performance of M2P is significantly better than the HLC
especially as the length of the MLRP increases. This fact illustrates that M2P presents
good scalability with respect to long patterns.

Finally, we measured the impact of the note count. For this reason, we used synthetic
music objects. The length of the objects was set to 1,000 notes and we varied the number
of distinct notes (note count). The results with respect to the note count are presented
in Figure 6b. As expected, the execution time for both algorithm reduces for increasing
note count. This is mainly due to the fact that the length of the repeating patterns and
MLRPs tends to decrease as the note count increases for this type of music objects [12].

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400

T
im

e
(m

se
c)

MLRP length

M2P
HLC

(a)

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

se
c)

Note count

M2P
HLC

(b)

Fig. 6. Results for Execution time vs.: (a) MLRP length (for a classic real music object); (b)
Note count (for synthetic music object).

However, M2P clearly outperforms HLC in all cases, verifying the results presented for
real objects.

6 Conclusions

In this paper we introduced the problem of mining the maximum-length repeating
patterns (MLRPs). This type of patterns helps in addressing the possible large number
of plain repeating patterns in large music objects, and can be useful in discovering
more sophisticated characteristics like music themes.

We present a novel algorithm, M2P, for the extraction of MLRPs from music se-
quences comprising of pitch information. The efficiency of M2P lays on the technique
employed, which avoids costly repetition of frequency calculations by examining as few
as possible intermediate repeating patterns, and aiming at fast reaching of MLRPs.

We have performed detailed experimental results and measured several factors, like
the music object’s size, the length of MLRP, and the note count. The experimental
results indicate significant performance gains (up to a factor of four) compared to a
prior method that was modified so as to constitute an efficient baseline algorithm.
Regarding future work, we will further consider the correspondence between repeating
patterns, MLRPs, and themes.

References

1. M. Alghoniemy and A.H. Tewfik: “User-Defined Music Sequence Retrieval”, Proceedings
8th ACM International Conference on Multimedia, pp.356-358, 2000.

2. J.-J. Aucouturier and M. Sandler: “Finding Repeating Patterns in Acoustic Musical Sig-
nals: Applications For Audio Thumbnailing”, Proceedings 22nd AES International Con-
ference on Virtual, Synthetic and Entertainment Audio, 2002.

3. H. Barlow and S. Morgenstern: “A Dictionary of Musical Themes”, Crown, New York,
1975.

4. M. Bartsch, W.P. Birmingham, D. Bykowski, R.B. Dannenberg, D. Mazzoni, C. Meek, M.
Mellody, W. Rand and G.H. Wakefield: “MUSART: Music Retrieval Via Aural Queries”,
Proceedings 2nd Annual International Symposium on Music Information Retrieval (IS-
MIR), 2001.

5. R. Bayardo: “Efficiently Mining Long Patterns from Databases”, Proceedings ACM Inter-
national Conference on Management of Data (SIGMOD), pp.85-93, 1998.

6. D. Byrd and T. Crawford: “Problems of Music Information Retrieval in the Real World”,
Information Processing and Management, Vol.38, No.2, pp.249-272, 2002.

7. A.L.P. Chen, M. Chang, J. Chen, J. Hsu, C. Hsu and Y.S. Hua: “Query by Music Seg-
ments: an Efficient Approach for Song Retrieval”, Proceedings IEEE International Con-
ference on Multimedia and Expo, pp.873-876, 2000.

8. T. Crawford, C.S. Iliopoulos and R. Raman: “String Matching Techniques for Music
Similarity and Melodic Recognition”, Computing in Musicology, Vol. 11, pp.73-100, 1998.

9. M.J. Dovey: “Adding Content-Based Searching to a Traditional Music Library Cata-
logue Server”, Proceedings 1st ACM/IEEE Joint Conference on Digital libraries (JCDL),
pp.249-250, 2001.

10. A.S. Durey and M.A. Clements: “Melody spotting using hidden Markov models”, Pro-
ceedings 2nd Annual International Symposium on Music Information Retrieval (ISMIR),
pp.109-117, 2001.

11. C. Francu and C.G. Nevill-Manning: “Distance Metrics and Indexing Strategies for a Digi-
tal Library of Popular Music”, Proceedings IEEE International Conference on Multimedia
and Expo, pp.889-894, 2000.

12. J.L. Hsu, C.C. Liu and A.L.P. Chen: “Discovering Non-Trivial Repeating Patterns in
Music Data”, IEEE Transactions on Multimedia, Vol.3, No.3, pp.311-325, 2001.

13. D. Huron: “Themefinder”. Available at www.themefinder.org.
14. Y.K. Kang, Y.S. Kim and K.I. Ku: “Extracting Theme Melodies by Using a Graphical

Clustering Algorithm for Content-Based MIR”, Proceedings 5th East-Europena Confer-
ence on Advances in Databases and Information Systems (ADBIS), pp.84-97, 2001.

15. M. Kassler: “Toward Musical Information Retrieval”, Perspectives of New Music, Vol.4,
No.2, pp.59-67, 1966.

16. J.L. Koh and W.D.C. Yu: “Efficient Feature Mining in Music Objects”, Proceedings 12th
Conference in Database and Expert System Applications (DEXA), pp.221-231, 2001.

17. C.C. Liu, J.L. Hsu and A.L.P. Chen: “Efficient Theme and Non-trivial Repeating Pattern
Discovering in Music Databases”, Proceedings 15th IEEE International Conference on
Data Engineering (ICDE), pp.14-21, 1999.

18. D.S. O’Maidin and M. Cahill: “Score Processing for MIR”, Proceedings 2nd Annual In-
ternational Symposium on Music Information Retrieval (ISMIR), pp.59-64, 2001.

19. C. Meek and W.P. Birmingham: “Thematic Extractor”, Proceedings 2nd Annual Interna-
tional Symposium on Music Information Retrieval (ISMIR), pp.119-128, 2001.

20. M. Mongeau and D. Sankoff: “Comparison of Musical Sequences”, Computer and the
Humanities, Vol.24, pp.161-175, 1990.

21. T. Nishimura, H. Hashiguchi, J. Takita, J.X. Zhang, M. Goto and R. Oka: “Music Signal
Spotting Retrieval by a Humming Query Suing Start Frame Feature Dependent Continu-
ous Dynamic Programming”, Proceedings 2nd Annual International Symposium on Music
Information Retrieval (ISMIR), pp.211-218, 2001.

22. J. Park, M.-S. Chen and P. Yu: “Using a Hash-Based Method with Transaction Trimming
for Mining Association Rules”, IEEE Transactions on Knowledge and Data Engineering,
Vol.9, No.5, pp.813-825, 1997.

23. P.-Y. Rolland and J.-G. Ganascia: “Pattern Detection and Discovery: The Case of Music
Data Mining”, Proceedings Conference on Pattern Detection and Discovery, pp.190-198,
2002.

24. L. Smith and R. Medina: “Discovering Themes by Exact Pattern Matching”, Proceedings
2nd Annual International Symposium on Music Information Retrieval (ISMIR), pp.31-32,
2001.

25. A. Uitdenbogerd and J. Zobel: “Melodic Matching Techniques for Large Music
Databases”, Proceedings ACM International Multimedia Conference, pp.57-66, 1999.

26. M. Zaki, S. Parthasarathy, M. Ogihara and W. Li: “New Algorithms for Fast Discovery
of Association Rules”, Proceedings International Conference on Knowledge Discovery and
Data Mining (KDD), pp.283-286, 1997.

